Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation
نویسندگان
چکیده
منابع مشابه
Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation
Magnetically actuated ciliary microrobots were designed, fabricated, and manipulated to mimic cilia-based microorganisms such as paramecia. Full three-dimensional (3D) microrobot structures were fabricated using 3D laser lithography to form a polymer base structure. A nickel/titanium bilayer was sputtered onto the cilia part of the microrobot to ensure magnetic actuation and biocompatibility. T...
متن کاملActuation, Sensing, and Fabrication for In Vivo Magnetic Microrobots
This paper investigates some of the fundamental design issues related to untethered biomedical microrobots guided inside the human body through external magnetic fields. Immediate application areas for these microrobots include cardiovascular, intraocular and inner-ear diagnosis and surgery. Issues investigated include the effects of magnetic actuation forces and viscous drag forces faced by ma...
متن کاملSix-Degrees-of-Freedom Remote Actuation of Magnetic Microrobots
Existing remotely-actuated microrobots powered by magnetic coils far from the workspace exhibit a maximum of only five-degrees-of-freedom (DOF) actuation, as creation of a driving torque about the magnetization axis is not achievable. This lack of orientation control limits the effectiveness of existing microrobots for precision tasks of object manipulation and orientation for advanced medical,...
متن کاملMagnetic Actuation Based Motion Control for Microrobots: An Overview
Untethered, controllable, mobile microrobots have been proposed for numerous applications, ranging from micro-manipulation, in vitro tasks (e.g., operation of microscale biological substances) to in vivo applications (e.g., targeted drug delivery; brachytherapy; hyperthermia, etc.), due to their small-scale dimensions and accessibility to tiny and complex environments. Researchers have used dif...
متن کاملFabrication and Characterization of Magnetic Microrobots for Three-Dimensional Cell Culture and Targeted Transportation
Magnetically manipulated microrobots are demonstrated for targeted cell transportation. Full three-dimensional (3D) porous structures are fabricated with an SU-8 photoresist using a 3D laser lithography system. Nickel and titanium are deposited as a magnetic material and biocompatible material, respectively. The fabricated microrobots are controlled in the fluid by external magnetic fields. Hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2016
ISSN: 2045-2322
DOI: 10.1038/srep30713